Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(Pyridin-2-yl)coumarin

Yu-Xia Da* and Zheng-Jun Quan

Gansu Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China

Correspondence e-mail: dayuxia@nwnu.edu.cn

Received 30 September 2010; accepted 5 October 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.072; wR factor = 0.230; data-to-parameter ratio = 13.3.

In the title compound, $C_{14}H_9NO_2$, the dihedral angle between the pyridine ring and the lactone ring is $10.40(3)^{\circ}$. The coumarin ring system is nearly planar, with a dihedral angle of 1.40 (2)° between the lactone and benzene rings. An intramolecular $C-H \cdots O$ hydrogen bond occurs. In the crystal, inversion dimers linked by pairs of C-H···O interactions occur, generating $R_2^2(14)$ loops.

Related literature

For background to the structures and properties of coumarins, see: Fylaktakidou et al. (2004); Griffiths et al. (1995); Moffett (1964); Ren & Huo (2008); Ren et al. (2010); Trenor et al. (2004); Walshe et al. (1997); Yu et al. (2006); Yu, Yang et al. (2010); Yu, Zhang et al. (2010). For reference bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

C14H9NO2 $M_r = 223.22$ Orthorhombic, Pbca a = 7.1107 (3) Å b = 13.9635 (5) Å c = 21.2867 (9) Å

 $V = 2113.56 (15) \text{ Å}^3$ Z = 8Cu $K\alpha$ radiation $\mu = 0.77 \text{ mm}^-$ T = 293 K $0.31\,\times\,0.22\,\times\,0.11$ mm

Data collection

```
Siemens SMART CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.795, T_{\max} = 0.920
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.072$	154 parameters
$wR(F^2) = 0.230$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.55 \ {\rm e} \ {\rm \AA}^{-3}$
2055 reflections	$\Delta \rho_{\rm min} = -0.43 \text{ e } \text{\AA}^{-3}$

4495 measured reflections

 $R_{\rm int} = 0.021$

2055 independent reflections

1581 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(A,	°))
---------------	----------	-----	----	---

$D-H\cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C11 - H11 \cdots O2$ $C12 - H12 \cdots O2^{i}$	0.93 0.93	2.25 2.50	2.875 (3) 3.318 (3)	124 147

Symmetry code: (i) -x - 1, -y, -z + 1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of Gansu Province (3ZS061-A25-019).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5667).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Fylaktakidou, K. C., Hadjipavlou-Litina, D. J., Litinas, K. E. & Nicolaides, D. N. (2004). Curr. Pharm. Des. 10, 3813-3833.
- Griffiths, J., Millar, V. & Bahra, G. S. (1995). Dyes Pigm. 28, 327-339.
- Moffett, R. B. (1964). J. Med. Chem. 7, 446-449.
- Ren, X. F. & Huo, S. Q. (2008). WO Patent 2008/010915 A2.
- Ren, X. F., Kondakova, M. E., Giesen, D. J., Rajeswaran, M., Madaras, M. & Lenhart, W. C. (2010). Inorg. Chem. 49, 1301-1303.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059-3077
- Walshe, M., Howarth, J., Kelly, M. T., O'Kennedy, R. & Smyth, M. R. (1997). J. Pharm. Biomed. Anal. 16, 319-325.
- Yu, T. Z., Yang, S. D., Zhao, Y. L., Zhang, H., Han, X. Q., Fan, D. W., Qiu, Y. Q. & Chen, L. L. (2010). J. Photochem. Photobiol. A, 214, 92-99.
- Yu, T. Z., Zhang, P., Zhao, Y. L., Zhang, H., Meng, J., Fan, D. W., Chen, L. L. & Qiu, Y. Q. (2010). Org. Electron. 11, 41-49.
- Yu, T. Z., Zhao, Y. L. & Fan, D. W. (2006). J. Mol. Struct. 791, 18-22.

supplementary materials

Acta Cryst. (2010). E66, o2872 [doi:10.1107/S1600536810039796]

3-(Pyridin-2-yl)coumarin

Y.-X. Da and Z.-J. Quan

Comment

Coumarins are an important class of organic compounds, which have been extensively investigated due to their applications in biological, chemical and physical fields (Walshe, *et al.*, 1997; Fylaktakidou, *et al.*, 2004; Yu, *et al.*, 2010; Trenor, *et al.*, 2004). The photophysical and spectroscopic properties of the coumarin derivatives can be readily modified by the introduction of substituents in parent coumarin, converting themselves into more useful products and more flexibility to fit well in various applications (Griffiths, *et al.*, 1995; Yu, *et al.*, 2006). Among the substituted coumarins, heterocyclic groups at the 3-position have given rise to many derivatives of biological and structural importance. For example, 3-pyridyl substituted coumarins are not only known for their diverse physiological activities (Moffett, *et al.*, 1964), but also have outstanding optical properties including high quantum yields and superior photostability (Yu, *et al.*, 2010). In addition, 3-pyridyl substituted coumarins have attracted considerable interest due to their use as ligands for Ir (III) complexes which possess higher quantum yields and much higher brightnesses (Ren, *et al.*, 2008; Ren, *et al.*, 2010). In this paper, we report the synthesis and crystal structure of 3-(pyridin-2-yl)coumarin.

The molecular structure of the title compound and the *ORTEP* structure is shown in Fig.1. The bond lengths and angles in the molecule are within normal ranges (Allen *et al.*, 1987). Both the pyrone and benzene rings in the coumarin motif are essentially planar. The dihedral angle between them is $1.40 (2)^\circ$, thus the coumarin moiety is essentially planar. The pyridine ring makes an angle of $10.40 (3)^\circ$ with the pyrone ring, they are not coplanar.

The crystal structure is stabilized by intramolecular and intermolecular C—H···O hydrogen bonds (Fig. 2). Specially, the molecules form one-dimensional chains through intermolecular C12—H12···O2 hydrogen bonds with a motif fashion of $R^2_2(14)$ (Fig. 3).

Experimental

Salicylaldehyde (0.1 mol) and pyridine-2-acetonitrile (0.1 mol) were dissolved in 30 ml of anhydrous alcohol, and then piperidine (0.1 ml) was added stepwise under ice bath. The mixture was stirred for 12 h at room temperature, then treated with HCl (50 ml, 3.5%) and refluxed for 10 h to hydrolyze the iminocoumarin. When the reaction was finished, the acidic solution was neutralized with aqueous ammonia until the pH was 7. The precipitate was filtered off and recrystallized from methanol to afford the title compound. m.p. 416–417 K. IR (KBr pellet, cm⁻¹): 3042 (aryl-CH), 1723 (C=O, lactone), 1605 (C=C), 1579, 1462, 1244, 1109, 1089; ¹H-NMR (500 MHz, CDCl₃): 8.87 (s, 1H, H-4), 8.64 (d, 1H, J = 5.4, H-6'), 8.32 (d, 1H, J = 8.2, H-3'), 7.87–7.82 (m, 2H, Aryl-H), 7.63 (t, 1H, J = 8.4, Aryl-H), 7.42–7.34 (m, 3H, Aryl-H).

Colourless blocks of (I) were obtained by slow evaporation of the methanol solution at room temperature.

Refinement

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.93 Å (ArH). The isotropic displacement parameters for all H atoms were set equal to 1.2 U_{eq} of the carrier atom.

Figures

Fig. 1. The molecular structure of (I) with displacement ellipsoids for the non-hydrogen atomes drawn at the 30% probability level.

Fig. 2. Intramolecular and intermolecular C-H···O hydrogen bonds.

 $D_{\rm x} = 1.403 {\rm Mg m}^{-3}$

 $\theta = 4.2 - 72.5^{\circ}$

 $\mu = 0.77 \text{ mm}^{-1}$

Block, colourless

 $0.31 \times 0.22 \times 0.11 \text{ mm}$

T = 293 K

Melting point = 416–417 K

Cu K α radiation, $\lambda = 1.54184$ Å

Cell parameters from 4495 reflections

Fig. 3. Packing diagram of the title compound along a axis and b axis. H atoms are omitted for clarity.

3-(Pyridin-2-yl)coumarin

Crystal data $C_{14}H_9NO_2$ $M_r = 223.22$ Orthorhombic, *Pbca* a = 7.1107 (3) Å b = 13.9635 (5) Å c = 21.2867 (9) Å V = 2113.56 (15) Å³ Z = 8F(000) = 928

Data collection

2055 independent reflections
1581 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.021$
$\theta_{\text{max}} = 72.5^{\circ}, \ \theta_{\text{min}} = 4.2^{\circ}$
$h = -5 \rightarrow 8$

$T_{\min} = 0.795, \ T_{\max} = 0.920$	$k = -15 \rightarrow 17$
4495 measured reflections	$l = -16 \rightarrow 26$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.072$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.230$	H-atom parameters constrained
<i>S</i> = 1.09	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.1725P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
2055 reflections	$(\Delta/\sigma)_{max} < 0.001$
154 parameters	$\Delta \rho_{max} = 0.55 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.43 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2429 (4)	0.14529 (15)	0.41263 (10)	0.0430 (6)
C2	0.3906 (4)	0.20503 (18)	0.42654 (12)	0.0544 (7)
H2	0.3935	0.2381	0.4645	0.065*
C3	0.5343 (4)	0.21543 (19)	0.38377 (14)	0.0596 (7)
Н3	0.6346	0.2559	0.3928	0.072*
C4	0.5307 (4)	0.1655 (2)	0.32686 (13)	0.0577 (7)
H4	0.6279	0.1730	0.2980	0.069*
C5	0.3826 (4)	0.10503 (18)	0.31356 (11)	0.0505 (6)
Н5	0.3811	0.0716	0.2758	0.061*
C6	0.2348 (3)	0.09346 (15)	0.35618 (10)	0.0408 (5)
C7	0.0765 (3)	0.03304 (15)	0.34618 (9)	0.0410 (5)
H7	0.0717	-0.0030	0.3095	0.049*
C8	-0.0669 (3)	0.02542 (14)	0.38726 (9)	0.0393 (5)
C9	-0.0573 (4)	0.08126 (16)	0.44606 (10)	0.0448 (6)
C10	-0.2310 (3)	-0.03764 (15)	0.37410 (9)	0.0396 (5)
C11	-0.3687 (4)	-0.06205 (18)	0.41772 (11)	0.0497 (6)

supplementary materials

H11	-0.3634	-0.0377	0.4583	0.060*
C12	-0.5124 (4)	-0.1222 (2)	0.40050 (12)	0.0562 (7)
H12	-0.6053	-0.1386	0.4293	0.067*
C13	-0.5179 (4)	-0.15823 (19)	0.34010 (12)	0.0541 (6)
H13	-0.6128	-0.1997	0.3273	0.065*
C14	-0.3768 (4)	-0.13020 (18)	0.29945 (11)	0.0507 (6)
H14	-0.3802	-0.1538	0.2586	0.061*
N1	-0.2370 (3)	-0.07198 (14)	0.31462 (8)	0.0462 (5)
01	0.0984 (3)	0.13797 (12)	0.45491 (8)	0.0503 (5)
02	-0.1716 (3)	0.08250 (16)	0.48780 (9)	0.0668 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C1	0.0534 (12)	0.0348 (10)	0.0408 (11)	0.0064 (9)	-0.0047 (9)	-0.0012 (8)
C2	0.0652 (15)	0.0419 (11)	0.0562 (13)	0.0006 (11)	-0.0111 (11)	-0.0058 (9)
C3	0.0567 (14)	0.0453 (12)	0.0768 (16)	-0.0083 (11)	-0.0103 (13)	0.0041 (11)
C4	0.0518 (13)	0.0560 (14)	0.0652 (15)	-0.0017 (12)	0.0045 (12)	0.0062 (11)
C5	0.0541 (13)	0.0494 (12)	0.0479 (12)	0.0035 (10)	0.0039 (10)	-0.0010 (9)
C6	0.0469 (12)	0.0361 (10)	0.0394 (10)	0.0070 (8)	-0.0045 (8)	-0.0012 (8)
C7	0.0508 (12)	0.0398 (10)	0.0324 (10)	0.0056 (9)	-0.0016 (8)	-0.0047 (7)
C8	0.0490 (12)	0.0364 (9)	0.0325 (9)	0.0065 (8)	-0.0011 (8)	-0.0021 (8)
C9	0.0533 (13)	0.0439 (11)	0.0372 (10)	0.0057 (10)	0.0034 (9)	-0.0063 (8)
C10	0.0483 (12)	0.0365 (10)	0.0341 (10)	0.0059 (8)	-0.0010 (8)	0.0021 (7)
C11	0.0586 (14)	0.0499 (12)	0.0406 (11)	0.0023 (11)	0.0081 (10)	-0.0003 (9)
C12	0.0564 (14)	0.0587 (14)	0.0535 (13)	-0.0035 (12)	0.0129 (11)	0.0070 (10)
C13	0.0563 (14)	0.0494 (12)	0.0566 (13)	-0.0093 (11)	-0.0074 (11)	0.0059 (10)
C14	0.0626 (15)	0.0479 (12)	0.0416 (11)	-0.0051 (10)	-0.0051 (10)	-0.0017 (9)
N1	0.0555 (11)	0.0474 (10)	0.0357 (9)	-0.0036 (8)	0.0007 (8)	-0.0011 (7)
01	0.0630 (11)	0.0465 (9)	0.0415 (8)	-0.0009 (7)	0.0000 (7)	-0.0119 (6)
O2	0.0746 (13)	0.0742 (13)	0.0514 (10)	-0.0078 (11)	0.0216 (9)	-0.0240 (8)

Geometric parameters (Å, °)

C1—O1	1.369 (3)	C8—C9	1.476 (3)
C1—C2	1.374 (4)	C8—C10	1.489 (3)
C1—C6	1.404 (3)	C9—O2	1.204 (3)
C2—C3	1.376 (4)	C9—O1	1.375 (3)
С2—Н2	0.9300	C10—N1	1.355 (3)
C3—C4	1.398 (4)	C10-C11	1.392 (3)
С3—Н3	0.9300	C11—C12	1.373 (4)
C4—C5	1.379 (4)	C11—H11	0.9300
C4—H4	0.9300	C12—C13	1.381 (4)
C5—C6	1.398 (3)	C12—H12	0.9300
С5—Н5	0.9300	C13—C14	1.382 (4)
C6—C7	1.423 (3)	С13—Н13	0.9300
С7—С8	1.347 (3)	C14—N1	1.324 (3)
С7—Н7	0.9300	C14—H14	0.9300

01—C1—C2	118.5 (2)	C7—C8—C10	121.18 (18)
O1—C1—C6	119.5 (2)	C9—C8—C10	120.52 (19)
C2—C1—C6	121.9 (2)	02—C9—O1	115.7 (2)
C1—C2—C3	119.3 (2)	O2—C9—C8	127.0 (2)
C1—C2—H2	120.4	O1—C9—C8	117.2 (2)
C3—C2—H2	120.4	N1-C10-C11	121.0 (2)
C2—C3—C4	120.5 (2)	N1-C10-C8	114.20 (19)
С2—С3—Н3	119.8	C11—C10—C8	124.82 (19)
С4—С3—Н3	119.8	C12—C11—C10	119.7 (2)
C5—C4—C3	119.8 (3)	C12—C11—H11	120.2
C5—C4—H4	120.1	C10-C11-H11	120.2
C3—C4—H4	120.1	C11—C12—C13	119.5 (2)
C4—C5—C6	120.8 (2)	C11—C12—H12	120.2
С4—С5—Н5	119.6	С13—С12—Н12	120.2
С6—С5—Н5	119.6	C12—C13—C14	117.4 (2)
C5—C6—C1	117.7 (2)	С12—С13—Н13	121.3
C5—C6—C7	124.5 (2)	C14—C13—H13	121.3
C1—C6—C7	117.8 (2)	N1-C14-C13	124.5 (2)
C8—C7—C6	123.25 (19)	N1-C14-H14	117.8
С8—С7—Н7	118.4	C13—C14—H14	117.8
С6—С7—Н7	118.4	C14—N1—C10	118.0 (2)
С7—С8—С9	118.3 (2)	C1—O1—C9	123.88 (17)
O1—C1—C2—C3	-178.1 (2)	C10-C8-C9-O1	-179.93 (19)
C6—C1—C2—C3	0.7 (4)	C7—C8—C10—N1	-10.5 (3)
C1—C2—C3—C4	-0.3 (4)	C9—C8—C10—N1	169.58 (19)
C2—C3—C4—C5	-0.3 (4)	C7—C8—C10—C11	168.8 (2)
C3—C4—C5—C6	0.5 (4)	C9—C8—C10—C11	-11.1 (3)
C4—C5—C6—C1	-0.1 (3)	N1-C10-C11-C12	0.4 (4)
C4—C5—C6—C7	179.7 (2)	C8-C10-C11-C12	-178.9 (2)
O1—C1—C6—C5	178.3 (2)	C10-C11-C12-C13	0.3 (4)
C2-C1-C6-C5	-0.5 (3)	C11-C12-C13-C14	-0.7 (4)
O1—C1—C6—C7	-1.6 (3)	C12-C13-C14-N1	0.4 (4)
C2—C1—C6—C7	179.7 (2)	C13-C14-N1-C10	0.2 (4)
C5—C6—C7—C8	-177.9 (2)	C11-C10-N1-C14	-0.7 (3)
C1—C6—C7—C8	1.8 (3)	C8-C10-N1-C14	178.7 (2)
C6—C7—C8—C9	-1.1 (3)	C2—C1—O1—C9	179.5 (2)
C6—C7—C8—C10	178.96 (18)	C6—C1—O1—C9	0.7 (3)
С7—С8—С9—О2	-179.5 (3)	O2—C9—O1—C1	179.8 (2)
C10—C8—C9—O2	0.4 (4)	C8—C9—O1—C1	0.1 (3)
C7—C8—C9—O1	0.2 (3)		

Hydrogen-bond	geometry	(Å,	°)
/ 0	0 /	1 1	

D—H···A	D—H	$H \cdots A$	$D \cdots A$	D—H··· A
C11—H11…O2	0.93	2.25	2.875 (3)	124
C12—H12····O2 ⁱ	0.93	2.50	3.318 (3)	147
Symmetry codes: (i) $-x-1$, $-y$, $-z+1$.				

Fig. 3

